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Accurate predictions of species abundance remain one of the most
vexing challenges in ecology. This observation is perhaps unsurpris-
ing, because population dynamics are often strongly forced and
highly nonlinear. Recently, however, numerous statistical techni-
ques have been proposed for fitting highly parameterized mecha-
nistic models to complex time series, potentially providing the
machinery necessary for generating useful predictions. Alterna-
tively, there is a wide variety of comparatively simple model-free
forecasting methods that could be used to predict abundance. Here
wepose a rather conservative challenge and askwhether a correctly
specifiedmechanisticmodel,fitwith commonly used statistical tech-
niques, can provide better forecasts than simple model-free meth-
ods for ecological systems with noisy nonlinear dynamics. Using
four different control models and seven experimental time series
of flour beetles, we found that Markov chain Monte Carlo proce-
dures for fitting mechanistic models often converged on best-fit
parameterizations far different from the knownparameters. As a re-
sult, the correctly specified models provided inaccurate forecasts
and incorrect inferences. In contrast, a model-free method based
on state-space reconstruction gave the most accurate short-term
forecasts, even while using only a single time series from the mul-
tivariate system. Considering the recent push for ecosystem-based
management and the increasing call for ecological predictions, our
results suggest that a flexiblemodel-free approachmay be themost
promising way forward.

Understanding fluctuations in species abundance is a long-
standing goal of ecology and is particularly important for the

conservation of severely depleted populations (1, 2). Dramatic
changes in species abundance are common (3) and large declines
can have disastrous impacts on ecosystem users (4). Accurate
forecasts could allow for improved conservation efforts and in-
creased fishery yields, however, ecological surprises are common
(5), and accurate predictions remain a major challenge (6).
As ecological time series continue to lengthen, and computer-

intensive statistics become more convenient, there has been an
increasing trend toward fitting complex mechanistic models that
incorporate both process and observation error (i.e., state-space
models) (7). A Bayesian fitting procedure for such a model typi-
cally involves computationally intensive Markov chain Monte
Carlo (MCMC) sampling of the joint posterior probability distri-
bution to find the best fitting parameters (8). Previous work con-
cluded that misspecified mechanistic models can produce poor
forecasts (9), but it has been suggested that state-space models
may be more robust to misspecification due to their inclusion of
a process-error term (8); however, their forecast accuracy remains
largely untested.
Model-free time series analysis provides an alternative method

for generating forecasts that, unlike most state-space fitting pro-
cedures, does not require intensive computations. Although there
exists a vast literature on time series forecasting methods, we focus
on three commonly used models: the linear autoregressive (AR)
and autoregressive moving average (ARMA) models, and the
nonlinear state-space reconstruction (SSR) method. AR and

ARMA time series models have been used extensively in ecology;
recent examples include forecasting quasi-extinction risk (10),
investigating the effects of climate change on fisheries (11), and
detecting critical thresholds in ecosystem dynamics (12). SSR
methods have been less pervasive in ecology (13, 14), although
they are ubiquitous in many other scientific disciplines for de-
scribing stochastic nonlinear systems (15).
Here, we pose a rather conservative challenge and ask whether

a correctly specified mechanistic model, fit with commonly used
statistical techniques, can provide better forecasts than simple
model-free methods for ecological systems with noisy nonlinear
dynamics. To answer this question, we used computer simulations
and experimental data to fit a suite of mechanistic models using
a Bayesian MCMC algorithm under ecologically realistic levels of
noise. Surprisingly, we found that even using only a single time
series variable for each system, an SSR forecast approach con-
sistently outperformed both the linear time series models and the
correctly specified mechanistic models.

Simulation Methods
Using four different mechanistic control models, we generated
simulated time series with both process noise and observation
error (see Table 1 for models and parameters). Each model was fit
to a 50-y time series (referred to as the training set) and forecast
accuracy was evaluated using an additional 50-y time series that
contained no observation error (referred to as the test set). Be-
cause each time series contains a unique sequence of process
noise, we simulated 100 replicates for each model to ensure robust
results. To facilitate comparison of forecast accuracy between
models, forecast error is described using the standardized rms
error statistic (SRMSE), which is defined as the rms error divided
by the SD of the test set. Forecast errors greater than unity in-
dicate predictions less accurate than simply predicting the mean of
the test set.
All species (or age classes) in each model were forecasted.

Importantly, however, to make the results more conservative,
the model-free methods used only the single time series of the
focal species (or age class) to make forecasts, whereas the
mechanistic models were fit to the entire multivariate set of
time series. In real systems we often lack time series of im-
portant driving variables or species; thus, for this additional
reason, this comparison represents a very optimistic scenario
for the mechanistic modeling approach.
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Control Models. We chose four control models that encompass a
wide range of ecological scenarios—the logistic model, a two-
species coupled logistic model (16), an age-structured model (17),
and a four-patch spatial model (18). Deterministic model struc-
tures are given in Table 1 (parameter values given in Table S1).
All control models included log-normal process and observation

error, and parameter values that resulted in chaotic or near-cha-
otic deterministic dynamics. A coefficient of variation (CV) of 0.2
was chosen for the observation error, which is consistent with that
reported in fish abundance surveys (19).
To avoid nonidentifiability of error sources, the process noise

variance was fixed to the correct value (giving the mechanistic ap-
proach yet another advantage), and only the observation error
variance was fit. Each control model was fit to its training set
using Bayesian adaptive MCMC with Geyer’s algorithm (20) in
MATLAB (21) (Table S2); similar results were obtained using R
and JAGS (22, 23) (Figs. S1 and S2). All priors were independent,
noninformative, truncated-normal distributions with mean equal
to the correct parameter value. Convergence of the algorithm was
evaluated using the Gelman–Rubin statistic (R̂< 1:2) (24) and
batch-mean normal–normal plots (Fig. S3). The Bayesian MCMC
fitting method used here is among the most commonly used in
ecology (25).
The expected value of the stochastic models closely matched

that of their deterministic skeleton (Fig. S4); therefore, forecasts
were made using the deterministic model with parameter values
corresponding to the mode of the posterior distribution (similar
results are obtained using the median). We initiated the MCMC
search on the known parameters because likelihood surfaces of
chaotic and near-chaotic time series are notoriously rugose (26),
and we wanted to ensure that the known model parameters were
evaluated; this is a luxury we lack when fitting models to real time
series (and represents another advantage given to the approach).
Also, in real systems, the control model is never known. Thus, the
use of the control model here must be considered a best-case
scenario for themechanistic modeling approach and should be the
ultimate advantage in this competition among models.

SSR Time Series Model. The SSR time series model use Takens’
theorem, which allows for the representation of a multivariate
dynamical system through the method of time-delay embedding
(27). Takens’ theorem provides the conditions under which a
multivariate dynamical system may be reconstructed from a uni-
variate time series by transforming the univariate time series into
a set of time-delayed vectors: Xt = [xt, xt−τ, xt−2τ,. . ., xt−(E−1)τ],
where x is the univariate time series, t is the time index, τ is the time
lag, and E is the embedding dimension. Provided that E is suffi-
ciently large, the collection of vectors Xt, for t = [1 + (E − 1)τ, . . .,

N], is an embedding of the attracting manifold, where N is the
length of the time series.
After transforming the time series into an embedding, we gen-

erated predictions using the S-Map model (13, 28, 29), which is
a locally weighted autoregressive model of the embedded time
series with weights given by

wðdÞ= exp
�
−θd=d

�
;

where θ ≥ 0, d is the Euclidean distance between the predictee and
the neighbor vector in embedded space, and d is the average dis-
tance between the predictee and all other vectors. The degree of
local weighting (θ) and the embedding dimension (E) were fit
using cross-validation on the 50-y training set. We searched to
a maximum of E = 9 lags, because the highest dimensionality of
the models was n = 4, and it has been shown that any nonlinear
stochastic model can be represented by a univariate model of
order 2n + 1, where n is the dimension of the true model (30).
Predictions were made on the 50-y test set.

Linear Time Series Models. Last, we evaluated the forecast accuracy
of two linear time series models: AR and ARMA. Linear time
series models have be used extensively in ecology. The ARMA(p,
q) model is given as (31)

ðxt − μÞ=
Xp

i= 1

βiðxt−i − μÞ+
Xq

j= 0

αjet−j;

where p is the dimension of the autoregressive term, q is the di-
mension of the moving average term, μ is the mean of the time
series, α and β are the coefficients of the autoregressive and mov-
ing average terms, respectively, and e is a normally distributed
random variable with mean zero.
It has been shown that many stochastic nonlinear processes, and

especially low-order limit cycles, are well approximated by an
ARMAmodel (31); however, the forecast accuracy of suchmodels

Table 1. Model structure and model parameter values used in
the simulations

Model name Process model structure*

Logistic xt+1 =
h
xtr

�
1− xt

K

�i
expðetÞ

Two-species xt+1 =
h
xtr1

�
1− xt

K1

�
− cxtyt

i
expðetÞ

yt+1 =
h
ytr2

�
1− yt

K2

�
+ cxtyt

i
expðetÞ

Age-structured x0,t = (x2,t + x3,t)f
x1,t+1 = x0,texp(r − rx0,t + «t)
x2,t+1 = s1x1,t
x3,t+1 = s2(x2,t + x3,t)

Spatial x
~
i;t = xi;texpðr − rxi;t + etÞ

xi;t+1 =
P4

j=1dijx
~
j;t

*Process noise «t is normally distributed with μ = 0 and σ = 0.005.

A B

C

Fig. 1. Forecast error for each forecasting method for the logistic (A) and
two-species (B and C) models. Forecast interval is the number of steps ahead
for which the prediction is being made. Forecast error (SRMSE) is the rms
error of the predictions divided by the SD of the test set. Points represent the
mean SRMSE over the 100 simulations for each model; bars are the SE. The
red, blue, green, and black lines show the forecast error for the fitted con-
trol model, SSR model, AR model, and ARMA model, respectively.
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under large observation error and strong nonlinear dynamics (e.g.,
chaos) remains largely untested.
Analogous to the nonlinear model, the dimension of the AR

and ARMA models was chosen using leave-one-out cross-
validation on the 50-y training set, where the maximum di-
mension tested was 2n + 1 (i.e., the maximum possible value of
p and q was 2n + 1). To differentiate between the performance
of the AR and ARMA models, we only considered ARMA
models that included a moving average component (i.e., pa-
rameter q was always greater than zero).

Simulation Results
Surprisingly, the SSR time series method consistently provided
more accurate short-term forecasts than even the control mod-
els. In contrast, the linear forecasting methods were often no
better than a prediction of the mean of the test set (represented
by SRMSE = 1; Figs. 1 and 2). The performance of the control
model varied depending on the system, but it too was often no
better than a mean predictor.
The MCMC convergence diagnostics suggested that the con-

trol models often settled on best-fit parameters that were sub-
stantially different from the true parameters (Figs. S5 and S6).
Often the best-fit parameters corresponded to stable (equilib-
rium) dynamics even though the true dynamics were chaotic; this
resulted in poor forecast accuracy despite the correct underlying
model structure.
For the logistic model and the two-species model, the SSR

model provided one-step-ahead forecasts that were ∼40% better
than a mean predictor. In contrast, the linear time series methods
were often no better than a mean predictor, and the control model
was often even worse (Fig. 1).
Similar results were obtained for the age-structured model. For

the age 0 class, the short-term predictions of the SSR model were
up to 50% better than the mean predictor, whereas the linear
models and the control model were no better than a mean pre-
dictor. One-step-ahead predictions of the linear models for the
age 1 and age 2 classes were consistently poor, whereas the control
model prediction accuracy increased to that of the SSR method
(Figs. 3 and 4).

The performance of the different forecasting methods varied
widely for the spatial model. The SSR method again generated
the most accurate predictions, with a forecast accuracy 70%
better than the mean predictor. The control model provided
short-term forecasts that were ∼50% better than the mean pre-
dictor, whereas the linear forecasting methods were no better
than forecasting the mean (Figs. 3D and 4D).
Among the linear time series models, the simpler AR model

provided a slightly better fit to the training set than the ARMA
model (mean Akaike information criterion of −5.00 vs. −4.85 for
the AR and ARMA models, respectively). Thus, the additional
moving-average terms of the ARMA model were unable to
capture the unexplained dynamics of the noisy, nonlinear mod-
els, which resulted in the slightly lower forecast error of the AR
model (Figs. 1 and 3).

Experimental Data Methods
The holy grail of population biology is a model that both accu-
rately predicts changes in abundance and can be used to antic-
ipate critical thresholds. Through a battery of perturbation
experiments and analyses of long time-series, this is exactly what
was achieved in an extensive study of the flour beetle Tribolium
castaneum (32). It was demonstrated that Tribolium population
dynamics are well represented by a discrete, age-structured model
of larvae, pupae, and adults (32–34), given as

Lt = bAt−1expð−celLt−1 − ceaAt−1Þ
Pt =Lt−1ð1− μ1Þ
At =Pt−1exp

�
−cpaAt−1

�
+At−1ð1− μaÞ;

where Lt is the abundance of feeding larvae at time t; Pt is the
abundance of large larvae, nonfeeding larvae, pupae, and callow
adults; and At is the number of sexually mature adults. The
parameter b is the number of larval recruits per adult per unit
of time in the absence of cannibalism, and the fractions μ1 and
μa are the larval and adult mortality rates, respectively. The
exponential terms in the larvae equation describe the probability
that an egg will be eaten in the presence of Lt−1 larvae and At−1

A B

C

Fig. 2. Predicted vs. observed for the logistic (A) and two-species models
(species x and y are B and C, respectively). One-to-one line in gray (repre-
senting perfect predictions) and dotted lines showing 90% confidence
intervals for each forecast method over all observations. The SSR model
provides the tightest confidence intervals about the one-to-one line.

A D

B

C

Fig. 3. Error of each forecasting method for the age-structured model (A–
C) and patch 1 of the spatial model (D); similar results were obtained for
patches 2–4 of the spatial model. For the age-structured model, ages 0, 1,
and 2 are represented by A, B, and C, respectively. The red, blue, green, and
black lines show the forecast error for the fitted control model, SSR model,
AR model, and ARMA model, respectively.
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adults, and the exponential term in the adults’ equation describes
the probability that a pupae will survive to become an adult when
At−1 adults are present.
We used time series from the Tribolium experiments described

in Dennis et al. (32) in which adult recruitment rates (for a total
of seven treatments) were experimentally manipulated, pro-
ducing limit cycles and chaos. For each experimental treatment,
the population was censused every 2 wk for 80 wk, resulting in
a 41-point time series. Each experimental treatment was repli-
cated twice, providing three independent time series for each
treatment with which to compare the forecast accuracy of the
different methods. For each treatment, one time series was
randomly chosen to fit the models (the training set), and the
other two time series were used to evaluate forecast accuracy
(the test set), providing a total of 21 evaluations.
To emulate ecologically realistic conditions, we added log-

normal observation error with a CV of 0.2 to all of the training
sets. The forecast accuracy was evaluated using the test-set time
series without observation error. The larvae-pupae-adult (LPA)
model was fit using the Bayesian MCMC routine described above
with the parameter search initiated on the parameter values esti-
mated in Dennis et al. (32) and on the correct initial conditions.

Experimental Results
As with the simulation results, our analysis of the experimental data
shows that the SSR time series method provided the most accurate
short-term forecasts of all of the methods tested. When averaged
over all treatments, short-termpredictions (4 wk or less)made by the
SSR method were significantly more accurate than the linear
methods, and more accurate than the control model in all but one
instance (Fig. 5). Short-term predictions (2 wk ahead) provided by
the SSR method were routinely over 40% more accurate than
aprediction of themeanof the time series (Fig. 5), whereas the linear
methods were only ∼20% more accurate than a mean predictor.
Similar to the simulation results, although the MCMC routine

for the control model had converged, it often converged on
parameterizations that resulted in equilibrium dynamics when
the true dynamics were either limit cycle or chaotic (Fig. S3); this
resulted in poor prediction accuracy for the control model. The
control model outperformed the time series methods only for the

one-step predictions of the pupae stage, which is unsurprising
given that the one-step-ahead transition from larvae to pupae is
determined by a single mortality parameter.
For the longest prediction interval (20 wk), the forecast ac-

curacy of all methods converged to that of the time series mean.
Although this was expected for the chaotic treatments, due to
sensitive dependence on initial conditions, it was notable that it
also occurred for deterministic limit cycles and is likely due to
the interaction of nonlinear dynamics and process noise.
For the larvae and adult time series, both the nonlinear (SSR)

and linear methods (AR and ARMA) were significantly more
accurate than the control model up to the 10-step-ahead pre-
diction horizon (Fig. 5 A and C). The results for the pupae time
series were similar, with the exception that the half-generation
predictions of the control model were most accurate (Fig. 5B).

Discussion
Despite the absence of mechanistic information about the un-
derlying ecological processes, the relatively simple SSR method
consistently outperformed the control models over near-term
prediction horizons. This result was robust across all simulations
and all life stages of the experimental data. Moreover, the SSR
model achieved this feat using only a single time series, whereas
the control model used all times series simultaneously (it is an
ecologically unrealistic scenario to assume we know themodel and
have time series for all of the relevant variables). Other analyses
have shown that multivariate SSR methods (35) improve with
additional information (14, 36), suggesting that the performance
of the SSRmodel tested here represents a lower bound on forecast
accuracy attainable with this general approach.
Overall, the control model forecast accuracy was similar to the

SSR model for the linear components of the models. For example,
for the linear (age 1 and age 2) components of the age-structured

A D

B

C

Fig. 4. Predicted vs. observed for the age-structured (A–C) and spatial
model (D). One-to-one line in gray (representing perfect predictions) and
dotted lines showing 90% confidence intervals for each forecast method
over all observations. The SSR model again provides the tightest confidence
intervals about the one-to-one line.

A

B

C

Fig. 5. Forecast error for the flour beetle experiments. Points represent the
mean SRMSE over all experiments; bars are the SE. A, B, and C show results
for the larvae, pupae, and adult test sets, respectively. In agreement with the
simulations, the SSR method provided the most accurate forecasts overall.
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model, the short-term accuracy of the control model was similar to
that of the SSRmodel, whereas the forecast accuracy of the control
model for the nonlinear (age 0) component was significantly worse
than the SSR model. Similar results were obtained for the experi-
mental data because the control model provided the best forecasts
for only the one-step-ahead predictions of the pupae stage, which is
governed by a single linear mortality term. This finding suggests
that the optimal forecasting model for age-structured populations
may be one that combines a mechanistic model for the upper age
classes with a time series model for the recruit dynamics.
For the cases considered here, we have shown that commonly

used statistical procedures for fitting mechanistic models to cha-
otic time series will often converge on parameterizations that yield
decidedly nonchaotic dynamics. In these cases, models with the
wrong parameters will likely yield wrong inferences, and measures
such as extinction risk, maximum sustainable yield, or population
growth rate (Fig. S5) can be severely biased. This observation has
particularly important implications for fishery management where
mechanistic model-fitting is often a critical element of the assess-
ment process.
An important question remains: How chaotic is too chaotic for

traditional Bayesian methods? To address this question, we per-
formed additional simulations for the logistic model under both
chaotic and nonchaotic parameterizations (r = 2.5–3.95). The
stability of the model strongly influenced parameter estimation
error. Error grew rapidly as themodel became unstable (Lyapunov
exponent near zero; Fig. S1), and estimates of the Lyapunov ex-
ponent were severely biased toward stability (Fig. S2). This bias
was present even when the true model was marginally stable,
suggesting that our results are relevant even for nonchaotic sys-
tems in the presence of process error; we speculate that this may

explain the apparent paucity of chaos in ecological time series. For
a more detailed treatment of this question, see Judd (37).
Alternative model-fitting procedures have been proposed that

estimate goodness of fit using summary statistics rather than
directly estimating parameter likelihood (38, 39). However,
those methods lack general recommendations for designing in-
formative statistics for arbitrary dynamic systems, and therefore
have not been widely adopted in ecology. Another promising
method involves fitting semiparametric functions to first-differ-
enced data (40); however, that method is considerably more
challenging to implement than the model-free methods de-
scribed here, and it has not been widely tested or adopted.
As ecologists, our ultimate goal is to uncover the processes that

govern natural systems. The ideal route to such discovery is through
hypothesis testing via controlled experiments. Unfortunately,
population-level hypotheses are impossible to test through such
experiments, and moreover, ecosystem dynamics are often suffi-
ciently complex that perturbation of any single variable is unlikely
to yield great insight. Forecasting provides a way forward, because
population-level hypotheses can be evaluated based on our ability to
make accurate predictions. Importantly, however, even correct
models with the correct parameters will fail to provide accurate long-
term forecasts due to sensitive dependence on initial conditions and
nonstationarity. Therefore, it would be fruitful for future work to
determine how to use short-term forecasts, which can be validated
empirically, to ensure sustainability in a changing environment.
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